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Outline

1. Lithium results
 

- lower edge densities
- self-shielding effect
- thermal collapse

2. Flibe results

- differences from Lithium
-  low- and high-recycling regimes

3. Auxiliary heating and localized evaporation region

4. Summary and plans
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Fewer impurity ions from Li vapor 
penetrate to the core than for F vapor 

Cases correspond to standard tokamak configuration
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Effective hydrogen particle lifetime is 1 / (1-R),
so divertor density rougly scales with it

Fluorine core density varies a factor of ~50
from low to high hydrogen recycling, R
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Side-wall impurity influx sets tokamak 
liquid temperature limits 

Impurity transport in edge region from 2-D UEDGE code
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and no auxillary heating methods



Details for Flibe temperature limits based 
on core impurity penetration  

●   For high recycling (R > 0.9), tokamak Flibe wall limit is
     below 450 C

●   For low recycling (R < 0.5) and successful auxiliary
     heating, the tokamak Flibe wall limit is at best 500 C 

●   Improve intervention techniques
        - move wall farther from core with auxiliary heating
        - use injection deutrium stream to sweep vapor out
        - new inovation  

●   Analyze other configurations with natural low 
     recycling edge-plasmas, e.g., the FRC

Conclusions from simulations to date:
       (for close-fitting wall ~10 cm from separatrix)

Further work for reduced core impurities from Flibe wall:
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Auxiliary heating can be roughly constrained
by power considerations

UEDGE calculations show energy cost per neutral

- for lithium, 200-300 eV 

- for fluorine, 2000-3000 eV

- these high values come from ionizing to 
      upper charge states near the core boundary

-- For an ITER-size device, assuming gas flux 
   of 10    / m   s with area of 1000 m   yields

- for lithium, power is ~4 MW

- for fluorine, power is ~40 MW

-- Up buttons

- smaller, higher power density devices

- separating vapor plasma from edge plasma 

20 2 2
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Reducing core power decreases shielding;
auxiliary heating can help as replacement
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Localized evaporation source lowers
impurity influx; rad. instability still limits
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Summary of impurity modeling
with UEDGE

Divertor impurity sources

●   Completed first UEDGE/WBC coupling for Li sputtering
     which shows low Li core concentration - see Brooks

Wall impurity sources

●   Low hydrogen-recycling plasmas can tolerate higher
     evaporative impurity flux than high recycling plasmas

●   Lithium is better shielded from the core plasma 
     than fluorine

●   For tokamaks without auxillary removal methods,
     an all Flibe wall/divertor likely will have excessive core
     impurities; others devices should be better (e.g., FRC)

●   Auxillary heating of edge plasma can significantly
     reduce impurity influx

●   For low-density, low-recycling edge-plasmas, self 
     shielding by impurity plasma helps limit core impurities



Plans

Assess auxiliary heating and larger wall/separatrix gap

Improve model: kinetic effects, more coupling to WBC

Analyze different configurations (e.g., FRC, spheromak)

Compare with experiments - TFTR, DIII-D, CDX-U
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